
Algorithmic Challenges:

Knuth-Morris-Pratt

Algorithm

Michael Levin

Higher School of Economics

Algorithms on Strings

Data Structures and Algorithms

https://goo.gl/fg3PjN
https://goo.gl/KAfKJT

Outline

1 Exact Pattern Matching

2 Safe Shift

3 Pre�x Function

4 Computing Pre�x Function

5 Knuth-Morris-Pratt Algorithm

Exact Pattern Matching

Input: Strings T (Text) and P (Pattern).

Output: All such positions in T (Text)

where P (Pattern) appears as a

substring.

(For all strings in this module we use 0-based

indices)

Brute Force Algorithm

Slide the Pattern down Text

Running time Θ(|T ||P |)

Brute Force Algorithm

Slide the Pattern down Text

Running time Θ(|T ||P |)

Brute Force Algorithm

a b r a c a d a b r a

a b r a

Brute Force Algorithm

a b r a c a d a b r a

a b r a

0 1 2 3 4 5 6 7 8 9 10

Output: []

Brute Force Algorithm

0 1 2 3 4 5 6 7 8 9 10

a b r a c a d a b r a

a b r a

Output: [0]

Brute Force Algorithm

0 1 2 3 4 5 6 7 8 9 10

Output: [0]

a b r a c a d a b r a

a b r a

Brute Force Algorithm

0 1 2 3 4 5 6 7 8 9 10

Output: [0]

a b r a c a d a b r a

a b r a

Brute Force Algorithm

0 1 2 3 4 5 6 7 8 9 10

Output: [0]

a b r a c a d a b r a

a b r a

Brute Force Algorithm

0 1 2 3 4 5 6 7 8 9 10

Output: [0]

a b r a c a d a b r a

a b r a

Brute Force Algorithm

0 1 2 3 4 5 6 7 8 9 10

Output: [0]

a b r a c a d a b r a

a b r a

Brute Force Algorithm

0 1 2 3 4 5 6 7 8 9 10

Output: [0]

a b r a c a d a b r a

a b r a

Brute Force Algorithm

0 1 2 3 4 5 6 7 8 9 10

Output: [0]

a b r a c a d a b r a

a b r a

Brute Force Algorithm

0 1 2 3 4 5 6 7 8 9 10

Output: [0]

a b r a c a d a b r a

a b r a

Brute Force Algorithm

0 1 2 3 4 5 6 7 8 9 10

Output: [0]

a b r a c a d a b r a

a b r a

Brute Force Algorithm

0 1 2 3 4 5 6 7 8 9 10

Output: [0]

a b r a c a d a b r a

a b r a

Brute Force Algorithm

0 1 2 3 4 5 6 7 8 9 10

Output: [0]

a b r a c a d a b r a

a b r a

Brute Force Algorithm

0 1 2 3 4 5 6 7 8 9 10

Output: [0]

a b r a c a d a b r a

a b r a

Brute Force Algorithm

0 1 2 3 4 5 6 7 8 9 10

Output: [0]

a b r a c a d a b r a

a b r a

Brute Force Algorithm

0 1 2 3 4 5 6 7 8 9 10

a b r a c a d a b r a

a b r a

Output: [0,7]

Skipping Positions

a b r a c a d a b r a

a b r a

Skipping Positions

a b r a c a d a b r a

a b r a

Skipping Positions

a b r a c a d a b r a

a b r a

a b r a

Skipping Positions

a b r a c a d a b r a

a b r a

a b r a

Skipping Positions

a b r a c a d a b r a

a b r a

a b r a

Skipping Positions

a b r a c a d a b r a

a b r a

a b r a

Skipping Positions

a b r a c a d a b r a

a b r a

a b r a

Skipping Positions

a b r a c a d a b r a

a b r a

a b r a

Skipping Positions

a b r a c a d a b r a

a b r a

a b r a

Skipping Positions

a b r a c a d a b r a

a b r a

a b r a

Skipping Positions

a b c d a b c d a b e f

a b c d a b e f

Skipping Positions

a b c d a b c d a b e f

a b c d a b e f

Skipping Positions

a b c d a b c d a b e f

a b c d a b e f

Skipping Positions

a b c d a b c d a b e f

a b c d a b e f

Skipping Positions

a b c d a b c d a b e f

a b c d a b e f

Skipping Positions

a b a b a b a b a b e f

a b a b a b e f

Skipping Positions

a b a b a b a b a b e f

a b a b a b e f

Skipping Positions

a b a b a b a b a b e f

a b a b a b e f

Skipping Positions

a b a b a b a b a b e f

a b a b a b e f

Skipping Positions

a b a b a b a b a b e f

a b a b a b e f

Skipping Positions

a b a b a b a b a b e f

a b a b a b e f

Skipping Positions

a b a b a b a b a b e f

a b a b a b e f

Skipping Positions

a b a b a b a b a b e f

a b a b a b e f

Definitions
Definition

Border of string S is a pre�x of S which is

equal to a su�x of S , but not equal to the

whole S .

Example

�a� is a border of �arba�

�ab� is a border of �abcdab�

�abab� is a border of �ababab�

�ab� is not a border of �ab�

Shifting Pattern

T

P

Find longest common pre�x u

Find w � the longest border of u

Move P such that pre�x w in P aligns

with su�x w of u in T

Shifting Pattern

T

P

u

u

Find longest common pre�x u

Find w � the longest border of u

Move P such that pre�x w in P aligns

with su�x w of u in T

Shifting Pattern

T

P

u

w w

u

Find longest common pre�x u

Find w � the longest border of u

Move P such that pre�x w in P aligns

with su�x w of u in T

Shifting Pattern

T

Pw w

u

w w

u

Find longest common pre�x u

Find w � the longest border of u

Move P such that pre�x w in P aligns

with su�x w of u in T

Shifting Pattern

T

Pw w

u

w w

u

Find longest common pre�x u

Find w � the longest border of u

Move P such that pre�x w in P aligns

with su�x w of u in T

Shifting Pattern

Tw w

u

Pw w

u

Find longest common pre�x u

Find w � the longest border of u

Move P such that pre�x w in P aligns

with su�x w of u in T

Now you know we can skip some of the

comparisons

But we shouldn't miss any of the

pattern occurrences in the text

Is it safe to shift the pattern this way?

Now you know we can skip some of the

comparisons

But we shouldn't miss any of the

pattern occurrences in the text

Is it safe to shift the pattern this way?

Now you know we can skip some of the

comparisons

But we shouldn't miss any of the

pattern occurrences in the text

Is it safe to shift the pattern this way?

Outline

1 Exact Pattern Matching

2 Safe Shift

3 Pre�x Function

4 Computing Pre�x Function

5 Knuth-Morris-Pratt Algorithm

Suffix notation

Definition

Denote by Sk su�x of string S starting at

position k .

Examples

S = �abcd� ⇒ S2 = �cd�

T = �abc� ⇒ T0 = �abc�

P = �aa� ⇒ P1 = �a�

Safe shift
Lemma

T
k

P

Let u be the longest common pre�x of P and

Tk . Let w be the longest border of u. Then

there are no occurrences of P in T starting

between positions k and (k + |u| − |w |) �
the start of su�x w in the pre�x u of Tk .

Safe shift
Lemma

T
k

P

u

u

Let u be the longest common pre�x of P and

Tk . Let w be the longest border of u. Then

there are no occurrences of P in T starting

between positions k and (k + |u| − |w |) �
the start of su�x w in the pre�x u of Tk .

Safe shift
Lemma

T
k

P

u

uw w

w w

Let u be the longest common pre�x of P and

Tk . Let w be the longest border of u. Then

there are no occurrences of P in T starting

between positions k and (k + |u| − |w |) �
the start of su�x w in the pre�x u of Tk .

Safe shift
Lemma

T
k

P

u

uw w

wwu

Let u be the longest common pre�x of P and

Tk . Let w be the longest border of u. Then

there are no occurrences of P in T starting

between positions k and (k + |u| − |w |) �
the start of su�x w in the pre�x u of Tk .

Proof

T
k

P

u ww

u

Suppose P occurs in T in position i

between k and start of su�x w

Then there is pre�x v of P equal to

su�x in u, and v is longer than w

Proof

T
k

P

u ww

u

Suppose P occurs in T in position i

between k and start of su�x w

Then there is pre�x v of P equal to

su�x in u, and v is longer than w

Proof

T
k

u ww

P

u

u

T
P

i
ww

Suppose P occurs in T in position i

between k and start of su�x w

Then there is pre�x v of P equal to

su�x in u, and v is longer than w

Proof

T
k

u ww

P

u

u

T
P

i
w v

v

Suppose P occurs in T in position i

between k and start of su�x w

Then there is pre�x v of P equal to

su�x in u, and v is longer than w

Proof

T
k

u ww

P

u

u

T
P

i
w v

v v

Then there is pre�x v of P equal to

su�x in u, and v is longer than w

v is a border longer than w , but w is

longest border of u � contradiction

Now you know it is possible to avoid

many of the comparisons which Brute

Force algorithm does

But how to determine the best pattern

shifts?

Now you know it is possible to avoid

many of the comparisons which Brute

Force algorithm does

But how to determine the best pattern

shifts?

Outline

1 Exact Pattern Matching

2 Safe Shift

3 Pre�x Function

4 Computing Pre�x Function

5 Knuth-Morris-Pratt Algorithm

Prefix function

Definition

Pre�x function of a string P is a function

s(i) that for each i returns the length of the

longest border of the pre�x P [0..i].

Example

P

s 0 0 1 2 3 4 0 1 1 2

a b a b a b c a a b

Prefix function

Definition

Pre�x function of a string P is a function

s(i) that for each i returns the length of the

longest border of the pre�x P [0..i].

Example

P

s 0 0 1 2 3 4 0 1 1 2

a b a b a b c a a b

Prefix function

Definition

Pre�x function of a string P is a function

s(i) that for each i returns the length of the

longest border of the pre�x P [0..i].

Example

P

s 0 0 1 2 3 4 0 1 1 2

a b a b a b c a a b

Prefix function

Definition

Pre�x function of a string P is a function

s(i) that for each i returns the length of the

longest border of the pre�x P [0..i].

Example

P

s 0 0 1 2 3 4 0 1 1 2

a b a b a b c a a b

Prefix function

Definition

Pre�x function of a string P is a function

s(i) that for each i returns the length of the

longest border of the pre�x P [0..i].

Example

P

s 0 0 1 2 3 4 0 1 1 2

a b a b a b c a a b

Prefix function

Definition

Pre�x function of a string P is a function

s(i) that for each i returns the length of the

longest border of the pre�x P [0..i].

Example

P

s 0 0 1 2 3 4 0 1 1 2

a b a b a b c a a b

Prefix function

Definition

Pre�x function of a string P is a function

s(i) that for each i returns the length of the

longest border of the pre�x P [0..i].

Example

P

s 0 0 1 2 3 4 0 1 1 2

a b a b a b c a a b

Prefix function

Definition

Pre�x function of a string P is a function

s(i) that for each i returns the length of the

longest border of the pre�x P [0..i].

Example

P

s 0 0 1 2 3 4 0 1 1 2

a b a b a b c a a b

Prefix function

Definition

Pre�x function of a string P is a function

s(i) that for each i returns the length of the

longest border of the pre�x P [0..i].

Example

P

s 0 0 1 2 3 4 0 1 1 2

a b a b a b c a a b

Prefix function

Definition

Pre�x function of a string P is a function

s(i) that for each i returns the length of the

longest border of the pre�x P [0..i].

Example

P

s 0 0 1 2 3 4 0 1 1 2

a b a b a b c a a b

Prefix function

Definition

Pre�x function of a string P is a function

s(i) that for each i returns the length of the

longest border of the pre�x P [0..i].

Example

P

s 0 0 1 2 3 4 0 1 1 2

a b a b a b c a a ba b a b a b c a a b

Lemma

P [0..i] has a border of length s(i + 1)− 1

Proof

i i + 10

Take the longest border w of P [0..i + 1]

Cut the last character from w � it's a

border of P [0..i] now

Lemma

P [0..i] has a border of length s(i + 1)− 1

Proof

i i + 10

w w

Take the longest border w of P [0..i + 1]

Cut the last character from w � it's a

border of P [0..i] now

Lemma

P [0..i] has a border of length s(i + 1)− 1

Proof

i i + 10

w w

Take the longest border w of P [0..i + 1]

Cut the last character from w � it's a

border of P [0..i] now

Lemma

P [0..i] has a border of length s(i + 1)− 1

Proof

i i + 10

w ′ w ′

Take the longest border w of P [0..i + 1]

Cut the last character from w � it's a

border of P [0..i] now

Corollary

s(i + 1) ≤ s(i) + 1

Enumerating borders

Lemma

If s(i) > 0, then all borders of P [0..i] but for

the longest one are also borders of

P [0..s(i)− 1].

Proof

i0

s(i) s(i)

Let u be a border of P [0..i] such that

|u| < s(i)

Then u is both a pre�x and a su�x of

P [0..s(i)− 1]

u ̸= P [0..s(i)− 1], so u is a border of

P [0..s(i)− 1]

Proof

i0

s(i) s(i)

u u

Let u be a border of P [0..i] such that

|u| < s(i)

Then u is both a pre�x and a su�x of

P [0..s(i)− 1]

u ̸= P [0..s(i)− 1], so u is a border of

P [0..s(i)− 1]

Proof

i0

s(i) s(i)

u uu

Let u be a border of P [0..i] such that

|u| < s(i)

Then u is both a pre�x and a su�x of

P [0..s(i)− 1]

u ̸= P [0..s(i)− 1], so u is a border of

P [0..s(i)− 1]

Proof

i0

s(i) s(i)

u uu

Let u be a border of P [0..i] such that

|u| < s(i)

Then u is both a pre�x and a su�x of

P [0..s(i)− 1]

u ̸= P [0..s(i)− 1], so u is a border of

P [0..s(i)− 1]

Enumerating borders

Corollary

All borders of P [0..i] can be enumerated by

taking the longest border b1 of P [0..i], then

the longest border b2 of b1, then the longest

border b3 of b2, . . . , and so on.

Computing s(i + 1)

i i + 10

Computing s(i + 1)

i i + 10

s(i) s(i)

Computing s(i + 1)

i i + 10

s(i) s(i)

x x

Computing s(i + 1)

i i + 10

x x

s(i + 1) s(i + 1)

s(i + 1) = s(i) + 1

Computing s(i + 1)

i i + 10

s(i) s(i)

Computing s(i + 1)

i i + 10

s(i) s(i)

y x

Computing s(i + 1)

i i + 10

s(i) s(i)

y x

Computing s(i + 1)

i i + 10

s(i) s(i)

xx

Computing s(i + 1)

i i + 10

xx x

s(i + 1) s(i + 1)

s(i + 1) = |some border of P [0..s(i)− 1]| + 1

Now you know lots of properties of

pre�x function

But how to compute all of its values??

Now you know lots of properties of

pre�x function

But how to compute all of its values??

Outline

1 Exact Pattern Matching

2 Safe Shift

3 Pre�x Function

4 Computing Pre�x Function

5 Knuth-Morris-Pratt Algorithm

Example

P

s

a b a b a b c a a b

Example

P

s

a b a b a b c a a b

Example

P

s 0

a b a b a b c a a b

Example

P

s 0

a b a b a b c a a b

Example

P

s 0

a b a b a b c a a b

Example

P

s 0

a b a b a b c a a b

Example

P

s 0 0

a b a b a b c a a b

Example

P

s 0 0

a b a b a b c a a b

Example

P

s 0 0

a b a b a b c a a b

Example

P

s 0 0 1

a b a b a b c a a b

Example

P

s 0 0 1

a b a b a b c a a b

Example

P

s 0 0 1

a b a b a b c a a b

Example

P

s 0 0 1 2

a b a b a b c a a b

Example

P

s 0 0 1 2

a b a b a b c a a b

Example

P

s 0 0 1 2

a b a b a b c a a b

Example

P

s 0 0 1 2 3

a b a b a b c a a b

Example

P

s 0 0 1 2 3

a b a b a b c a a b

Example

P

s 0 0 1 2 3

a b a b a b c a a b

Example

P

s 0 0 1 2 3 4

a b a b a b c a a b

Example

P

s 0 0 1 2 3 4

a b a b a b c a a b

Example

P

s 0 0 1 2 3 4

a b a b a b c a a b

Example

P

s 0 0 1 2 3 4

a b a b a b c a a b

Example

P

s 0 0 1 2 3 4

a b a b a b c a a b

Example

P

s 0 0 1 2 3 4

a b a b a b c a a b

Example

P

s 0 0 1 2 3 4

a b a b a b c a a b

Example

P

s 0 0 1 2 3 4 0

a b a b a b c a a b

Example

P

s 0 0 1 2 3 4 0

a b a b a b c a a b

Example

P

s 0 0 1 2 3 4 0

a b a b a b c a a b

Example

P

s 0 0 1 2 3 4 0 1

a b a b a b c a a b

Example

P

s 0 0 1 2 3 4 0 1

a b a b a b c a a b

Example

P

s 0 0 1 2 3 4 0 1

a b a b a b c a a b

Example

P

s 0 0 1 2 3 4 0 1

a b a b a b c a a b

Example

P

s 0 0 1 2 3 4 0 1

a b a b a b c a a b

Example

P

s 0 0 1 2 3 4 0 1 1

a b a b a b c a a b

Example

P

s 0 0 1 2 3 4 0 1 1

a b a b a b c a a b

Example

P

s 0 0 1 2 3 4 0 1 1

a b a b a b c a a b

Example

P

s 0 0 1 2 3 4 0 1 1 2

a b a b a b c a a b

Example

P

s 0 0 1 2 3 4 0 1 1 2

a b a b a b c a a b

ComputePrefixFunction(P)

s ← array of integers of length |P |
s[0]← 0, border ← 0

for i from 1 to |P | − 1:

while (border > 0) and (P[i] ̸= P[border]):
border ← s[border − 1]

if P[i] == P[border]:
border ← border + 1

else:

border ← 0

s[i]← border
return s

ComputePrefixFunction(P)

s ← array of integers of length |P |
s[0]← 0, border ← 0

for i from 1 to |P | − 1:

while (border > 0) and (P[i] ̸= P[border]):
border ← s[border − 1]

if P[i] == P[border]:
border ← border + 1

else:

border ← 0

s[i]← border
return s

ComputePrefixFunction(P)

s ← array of integers of length |P |
s[0]← 0, border ← 0

for i from 1 to |P | − 1:

while (border > 0) and (P[i] ̸= P[border]):
border ← s[border − 1]

if P[i] == P[border]:
border ← border + 1

else:

border ← 0

s[i]← border
return s

ComputePrefixFunction(P)

s ← array of integers of length |P |
s[0]← 0, border ← 0

for i from 1 to |P | − 1:

while (border > 0) and (P[i] ̸= P[border]):
border ← s[border − 1]

if P[i] == P[border]:
border ← border + 1

else:

border ← 0

s[i]← border
return s

ComputePrefixFunction(P)

s ← array of integers of length |P |
s[0]← 0, border ← 0

for i from 1 to |P | − 1:

while (border > 0) and (P[i] ̸= P[border]):
border ← s[border − 1]

if P[i] == P[border]:
border ← border + 1

else:

border ← 0

s[i]← border
return s

ComputePrefixFunction(P)

s ← array of integers of length |P |
s[0]← 0, border ← 0

for i from 1 to |P | − 1:

while (border > 0) and (P[i] ̸= P[border]):
border ← s[border − 1]

if P[i] == P[border]:
border ← border + 1

else:

border ← 0

s[i]← border
return s

ComputePrefixFunction(P)

s ← array of integers of length |P |
s[0]← 0, border ← 0

for i from 1 to |P | − 1:

while (border > 0) and (P[i] ̸= P[border]):
border ← s[border − 1]

if P[i] == P[border]:
border ← border + 1

else:

border ← 0

s[i]← border
return s

ComputePrefixFunction(P)

s ← array of integers of length |P |
s[0]← 0, border ← 0

for i from 1 to |P | − 1:

while (border > 0) and (P[i] ̸= P[border]):
border ← s[border − 1]

if P[i] == P[border]:
border ← border + 1

else:

border ← 0

s[i]← border
return s

ComputePrefixFunction(P)

s ← array of integers of length |P |
s[0]← 0, border ← 0

for i from 1 to |P | − 1:

while (border > 0) and (P[i] ̸= P[border]):
border ← s[border − 1]

if P[i] == P[border]:
border ← border + 1

else:

border ← 0

s[i]← border
return s

ComputePrefixFunction(P)

s ← array of integers of length |P |
s[0]← 0, border ← 0

for i from 1 to |P | − 1:

while (border > 0) and (P[i] ̸= P[border]):
border ← s[border − 1]

if P[i] == P[border]:
border ← border + 1

else:

border ← 0

s[i]← border
return s

ComputePrefixFunction(P)

s ← array of integers of length |P |
s[0]← 0, border ← 0

for i from 1 to |P | − 1:

while (border > 0) and (P[i] ̸= P[border]):
border ← s[border − 1]

if P[i] == P[border]:
border ← border + 1

else:

border ← 0

s[i]← border
return s

Lemma

The running time of

ComputePrefixFunction is O(|P |).

Proof

Everything but for inner while loop is

O(|P |) initialization plus O(|P |)
iterations of the for loop with O(1)

assignments on each iteration

Now we will bound the number of the

while loop iterations by O(|P |)

Proof

Everything but for inner while loop is

O(|P |) initialization plus O(|P |)
iterations of the for loop with O(1)

assignments on each iteration

Now we will bound the number of the

while loop iterations by O(|P |)

i

s(i)

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9

a b a b a b c a a b

i

s(i)

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9

a b a b a b c a a b

i

s(i)

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9

a b a b a b c a a b

i

s(i)

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9

a b a b a b c a a b

i

s(i)

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9

a b a b a b c a a b

i

s(i)

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9

a b a b a b c a a b

i

s(i)

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9

a b a b a b c a a b

i

s(i)

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9

a b a b a b c a a b

i

s(i)

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9

a b a b a b c a a b

i

s(i)

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9

a b a b a b c a a b

i

s(i)

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9

a b a b a b c a a b

Proof

(continued)

border can increase at most by 1 on

each iteration of the for loop

In total, border is increased O(|P |)
times

border is decreased at least by 1 on

each iteration of the while loop

border ≥ 0

So there are O(|P |) iterations of the
while loop

Proof

(continued)

border can increase at most by 1 on

each iteration of the for loop

In total, border is increased O(|P |)
times

border is decreased at least by 1 on

each iteration of the while loop

border ≥ 0

So there are O(|P |) iterations of the
while loop

Proof

(continued)

border can increase at most by 1 on

each iteration of the for loop

In total, border is increased O(|P |)
times

border is decreased at least by 1 on

each iteration of the while loop

border ≥ 0

So there are O(|P |) iterations of the
while loop

Proof

(continued)

border can increase at most by 1 on

each iteration of the for loop

In total, border is increased O(|P |)
times

border is decreased at least by 1 on

each iteration of the while loop

border ≥ 0

So there are O(|P |) iterations of the
while loop

Proof

(continued)

border can increase at most by 1 on

each iteration of the for loop

In total, border is increased O(|P |)
times

border is decreased at least by 1 on

each iteration of the while loop

border ≥ 0

So there are O(|P |) iterations of the
while loop

Now you know how to compute pre�x

function in linear time

But how to �nd pattern in text??

Now you know how to compute pre�x

function in linear time

But how to �nd pattern in text??

Outline

1 Exact Pattern Matching

2 Safe Shift

3 Pre�x Function

4 Computing Pre�x Function

5 Knuth-Morris-Pratt Algorithm

Algorithm

S
P T

a b r a $ a b r a c a d a b r a

To search for pattern P in text T :

Create new string S = P + '$' + T ,

where '$' is a special character absent

from both P and T

Algorithm

S
P T

s

a b r a $ a b r a c a d a b r a

0 0 0 1 0 1 2 3 4 0 1 0 1 2 3 4

To search for pattern P in text T :

Compute pre�x function s for string S

For all positions i such that i > |P | and
s(i) = |P |, add i − 2|P | to the output

Algorithm

S
P T

s

a b r a $ a b r a c a d a b r a

0 0 0 1 0 1 2 3 4 0 1 0 1 2 3 4

To search for pattern P in text T :

Compute pre�x function s for string S

For all positions i such that i > |P | and
s(i) = |P |, add i − 2|P | to the output

Algorithm

S
P T

s

a b r a $ a b r a c a d a b r a

0 0 0 1 0 1 2 3 4 0 1 0 1 2 3 40 0 0 1 0 1 2 3 4 0 1 0 1 2 3 4

To search for pattern P in text T :

Compute pre�x function s for string S

For all positions i such that i > |P | and
s(i) = |P |, add i − 2|P | to the output

Algorithm

S
P T

s

a b r a $ a b r a c a d a b r a

0 0 0 1 0 1 2 3 4 0 1 0 1 2 3 40 0 0 1 0 1 2 3 4 0 1 0 1 2 3 4

a b r a $ a b r a c a d a b r a

To search for pattern P in text T :

Compute pre�x function s for string S

For all positions i such that i > |P | and
s(i) = |P |, add i − 2|P | to the output

Algorithm

S
P T

s

a b r a $ a b r a c a d a b r a

0 0 0 1 0 1 2 3 4 0 1 0 1 2 3 40 0 0 1 0 1 2 3 4 0 1 0 1 2 3 4

To search for pattern P in text T :

Compute pre�x function s for string S

For all positions i such that i > |P | and
s(i) = |P |, add i − 2|P | to the output

Algorithm

S
P T

s

a b r a $ a b r a c a d a b r a

0 0 0 1 0 1 2 3 4 0 1 0 1 2 3 40 0 0 1 0 1 2 3 4 0 1 0 1 2 3 4

a b r a $ a b r a c a d a b r a

To search for pattern P in text T :

Compute pre�x function s for string S

For all positions i such that i > |P | and
s(i) = |P |, add i − 2|P | to the output

Explanation

For all i , s(i) ≤ |P | because of the

special character '$'

If i > |P | and s(i) = |P |, then
P = S [0..|P | − 1] = S [i − |P | + 1..i] =

T [i − 2|P |..i − |P | − 1]

If s(i) < |P |, no full occurrence of |P |
ends in position i

FindAllOccurrences(P ,T)

S ← P + ’$’ + T

s ← ComputePrefixFunction(S)

result ← empty list

for i from |P | + 1 to |S | − 1:

if s[i] == |P |:
result.Append(i − 2|P |)

return result

FindAllOccurrences(P ,T)

S ← P + ’$’ + T

s ← ComputePrefixFunction(S)

result ← empty list

for i from |P | + 1 to |S | − 1:

if s[i] == |P |:
result.Append(i − 2|P |)

return result

FindAllOccurrences(P ,T)

S ← P + ’$’ + T

s ← ComputePrefixFunction(S)

result ← empty list

for i from |P | + 1 to |S | − 1:

if s[i] == |P |:
result.Append(i − 2|P |)

return result

FindAllOccurrences(P ,T)

S ← P + ’$’ + T

s ← ComputePrefixFunction(S)

result ← empty list

for i from |P | + 1 to |S | − 1:

if s[i] == |P |:
result.Append(i − 2|P |)

return result

FindAllOccurrences(P ,T)

S ← P + ’$’ + T

s ← ComputePrefixFunction(S)

result ← empty list

for i from |P | + 1 to |S | − 1:

if s[i] == |P |:
result.Append(i − 2|P |)

return result

FindAllOccurrences(P ,T)

S ← P + ’$’ + T

s ← ComputePrefixFunction(S)

result ← empty list

for i from |P | + 1 to |S | − 1:

if s[i] == |P |:
result.Append(i − 2|P |)

return result

FindAllOccurrences(P ,T)

S ← P + ’$’ + T

s ← ComputePrefixFunction(S)

result ← empty list

for i from |P | + 1 to |S | − 1:

if s[i] == |P |:
result.Append(i − 2|P |)

return result

Lemma

The running time of Knuth-Morris-Pratt

algorithm is O(|P | + |T |).

Proof

Building string S is O(|P | + |T |)

Computing pre�x function is

O(|S |) = O(|P | + |T |)
The for loop runs

O(|S |) = O(|P | + |T |) iterations

Lemma

The running time of Knuth-Morris-Pratt

algorithm is O(|P | + |T |).

Proof

Building string S is O(|P | + |T |)
Computing pre�x function is

O(|S |) = O(|P | + |T |)

The for loop runs

O(|S |) = O(|P | + |T |) iterations

Lemma

The running time of Knuth-Morris-Pratt

algorithm is O(|P | + |T |).

Proof

Building string S is O(|P | + |T |)
Computing pre�x function is

O(|S |) = O(|P | + |T |)
The for loop runs

O(|S |) = O(|P | + |T |) iterations

Conclusion

Can search pattern in text in linear time

Can compute pre�x function of a string

in linear time

Can enumerate all borders of a string

	Exact Pattern Matching
	Safe Shift
	Prefix Function
	Computing Prefix Function
	Knuth-Morris-Pratt Algorithm

